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Abstract. A universal model of ann-stage combined Carnot cycle system is established.
Several major irreversibilities which often exist in real thermodynamic cycles, such as finite-rate
heat transfer in the heat-exchange processes, heat leak losses of the heat source, and internal
dissipation of the working fluid, are included in the model so that many models of irreversible
and endoreversible Carnot cycles which appear in the literature can be regarded as special
cases of the universal cycle model. The efficiency, power output and rate of heat input are
optimized. Some characteristic curves of the cycle system are presented. Some important
performance bounds are given. The optimal combined conditions between two adjacent cycles
in the combined cycle system are determined. The optimal performance of an arbitrary-stage
irreversible, endoreversible, and reversible combined Carnot cycle system can be directly derived
for specific choices of some parameters. The results obtained here are of general significance
for both physics and engineering.

1. Introduction

The reversible model of the Carnot cycle has played a major role in the establishment and
development of thermodynamics. Almost all thermodynamics texts introduce the Carnot
cycles. Although the Carnot efficiencyηc is of great importance in theory, it is invariably
far above the efficiency of real heat engines and hence is of very limited practical value.
This problem has triggered a series of investigations on the efficiency of heat engines at
maximum power output.

Since Rubin [1] defined an endoreversible cycle, which is an extension of reversible
cycles, the endoreversible models of the Carnot cycle have been widely used to analyse the
performance of heat engines [2–8], refrigerators [9–12], and other thermodynamic systems,
such as chemical reactors [13–16], solar cells [17, 18], quantum-mechanical open systems
[19, 20]. Besides, other fields such as climatology [21, 22] and computing [23] can also be
better described by the endoreversible models of the Carnot cycle. At present the concept
of the endoreversible Carnot cycle has appeared in many textbooks [24–28].

Real heat engines are internally reversible. Besides the irreversibility of finite-rate heat
transfer across finite temperature differences, there are also other sources of irreversibility,
such as heat leaks, turbulence, friction, and the like. In order to analyse the performance of
heat engines affected by multi-irreversibilities, some new irreversible cycle models of heat
engines have been proposed and many significant results have been obtained [29–34].

Because of the importance of the Carnot cycle in both physics and engineering, it
is necessary to develop further new models of irreversible Carnot cycles and investigate
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Figure 1. Schematic diagram of ann-stage irreversible combined Carnot cycle system including
several major irreversibilities such as finite-rate heat transfer, internal dissipation of the working
fluid and heat leak losses of the heat source.

systematically their optimal performance. In this paper, we will establish a universal cycle
model and use it to analyse the influence of several major irreversibilities on the performance
of an n-stage combined Carnot cycle system.

2. A universal cycle model

Figure 1 shows the schematic diagram of ann-stage irreversible combined Carnot cycle
system. Each cycle in the system is connected to the next cycle through the heat exchanger
between two adjacent cycles such that the waste heat released from a higher temperature
range cycle is used totally as the heat source for the next higher temperature range cycle.
The working fluid in the respective cycles flows continuously such that the combined cycle
system operates with a steady state. When the effect of the irreversibility of finite-rate heat
transfer and the internal dissipation of the working fluid on the performance of the combined
cycle system is taken into account, each cycle in the system is an irreversible Carnot cycle
and consists of two irreversible isothermal and two irreversible adiabatic processes. In
figure 1, qi and qi+1 (i = 1, 2, . . . , n) are the rates of heat input and output of theith
cycle,T2i andT2i+1 (i = 1, 2, . . . , n) are the temperatures of the working fluid in the high-
and low-temperature isothermal processes of theith cycle, T1 = Th and T2n+2 = Tc are
the temperatures of the heat source and sink,P is the power output of the combined cycle
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system, andqL is the heat leak from the heat source to the heat sink [34–36]. Then, the net
amounts of heatqh andqc released from the heat source and rejected to the heat sink are

qh = q1+ qL (1)

and

qc = qn+1+ qL (2)

respectively.
The performance of an irreversible cycle is directly dependent on the heat transfer law.

When heat transfer obeys a Newtonian law, one has

qi = UiAi(T2i−1− T2i ) (i = 1, 2, . . . , n+ 1) (3)

and

qL = kL(Th − Tc) (4)

wherekL is the heat loss coefficient of the heat source,U1 andAi (i = 2, 3, . . . , n) are the
overall heat-transfer coefficient and area of the heat exchanger between the(i−1)th andith
cycles,U1 andA1 are the overall heat-transfer coefficient and area of the heat exchanger
between the heat source at temperatureTh and the first cycle, andUn+1 andAn+1 are the
overall heat-transfer coefficient and area of the heat exchanger between thenth cycle and
the heat sink at temperatureTc. The total heat-transfer area of(n + 1) heat exchangers in
the combined cycle system is

A =
n+1∑
i=1

Ai. (5)

According to the cycle model mentioned above and the second law of thermodynamics,
we can introduce an irreversibility factor

Ii = qi+1/T2i+1

qi/T2i
> 1 (6)

to describe the internal irreversibility of the working fluid in theith cycle. The total
irreversibility due to the internal dissipation of the working fluids in the system may be
expressed by

I =
n∏
i=1

Ii . (7)

It is clearly seen from equation (6) that whenIi = 1, theith cycle is endoreversible; when
Ii > 1, theith cycle is internally irreversible.

The cycle model mentioned above is a universal model of the Carnot cycle. It includes
not only the irreversibility of finite-rate heat transfer but also the internal dissipation of
the working fluids and the heat leak losses of the heat source. It is important that the
optimal performance concerning an arbitrary-stage irreversible, endoreversible, or reversible
combined Carnot cycle system may be directly derived from the cycle model.
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3. Efficiency and power output

The efficiency and power output are two important parameters of heat engines. Using the
above equations, we obtain the efficiencyη, power outputP , and rate of heat inputq1 of
an n-stage combined Carnot cycle system as

η = qh − qc
qh

=
(

1− qn+1

q1

)
q1

qh

=
(

1− IT3T5 . . . T2n+1

T2T4 . . . T2n

)
q1

q1+ qL
=
(

1− ITc/Th

x1x2 . . . xn+1

)
q1

q1+ qL (8)

P = qh − qc = (q1+ qL)η (9)

and

q1 = A q1∑n+1
i=1 Ai

= A∑n+1
i=1

qi
Ui (T2i−1−T2i )q1

= A

1
U1(T1−T2)

+ I1T3/T2

U2(T3−T4)
+ I1I2T3T5/(T2T4)

U3(T5−T6)
+ · · · + IT3T5...T2n+1

Un+1(T2n+1−T2n+2)T2T4...T2n

= ATh
1

U∗1 (1−x1)
+ 1

U∗2 x1(1−x2)
+ 1

U∗3 x1x2(1−x3)
+ · · · + 1

U∗n+1x1x2...xn(1−xn+1)

(10)

wherexi = T2i/T2i−1(i = 1, 2, . . . , n+ 1) and

U ∗i = Ui/
i−1∏
j=0

Ij (i = 1, 2, 3, . . . , n+ 1) (11)

is the equivalent overall heat-transfer coefficient of the heat exchanger between the(i−1)th
and ith cycles. TheI0 appearing in equation (11) is stipulated to be equal to 1.

Eliminating xn+1 in equations (8) and (10) gives

η =
(

1− ITc/Th

x1x2 . . . xn − 1
U∗n+1D

)
q1

q1+ qL (12)

where

D = ATh

q1
− 1

U ∗1 (1− x1)
− 1

U ∗2x1(1− x2)
− 1

U ∗3x1x2(1− x3)
− · · ·

− 1

U ∗n x1x2 . . . xn−1(1− xn) . (13)

4. Characteristic curves

For a given rate of heat inputq1 and total heat-exchange areaA, using equation (12) and
the extremal conditions

∂η

∂xi
= 0 (i = 1, 2, . . . , n) (14)

we find that the efficiency is given by (a detailed derivation is given in appendix A)

η =
(

1− ITc/Th
1− q∗1

)
q∗1

q∗1 + C
(15)
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Figure 2. Efficiencyη versus dimensionless rate of heat inputq∗1 . Curves: a (I = 1, C = 0), b
(I = 1.1, C = 0), c (I = 1, C = 0.1), and d (I = 1.1, C = 0.1) are presented forTc/Th = 0.5.

whereq∗1 = q1/(U
∗ATh), C = qL/(U ∗ATh), and

U ∗ = 1

/( n+1∑
i=1

1√
U ∗i

)2

(16)

is the equivalent overall heat-transfer coefficient of the combined cycle system.
Substituting equation (15) into equation (9) gives the relation between the dimensionless

power outputP ∗ = P/(U ∗ATh) and rate of heat inputq∗1 as

P ∗ =
(

1− ITc/Th
1− q∗1

)
q∗1 . (17)

From equations (15) and (17), we obtain theη–q∗1 andP ∗–q∗1 characteristic curves, as
shown in figures 2 and 3, respectively. It is seen from figures 2 and 3 that although the
power output is not affected by the heat leak losses of the heat source, the efficiency of the
cycle system is obviously dependent on the heat leak losses of the heat source.

Eliminating q∗1 in equations (15) and (17), we obtain the optimal relation between the
dimensionless power outputP ∗ and the efficiencyη as

(1− η)(P ∗)2− [ηI + 2C − (1+ C)η]ηP ∗ + (C + ηI )Cη2 = 0 (18)

whereηI = 1− ITc/Th.
Using equation (18), we can generate theP ∗–η characteristic curves of ann-stage

combined Carnot cycle system, as shown in figure 4.
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Figure 3. The dimensionless power outputP ∗ versus rate of heat inputq∗1 . Curves: a (I = 1)
and b (I = 1.1) are presented forTc/Th = 0.5.

5. Some important performance bounds

Figure 4 shows clearly that when the heat leak losses of the heat source is taken into
account, theP ∗–η characteristic curves of ann-stage combined Carnot cycle system are of
loop shapes. There exist a maximum power output and a maximum efficiency.

From equation (17) and its extremal condition

dP ∗

dq∗1
= 0 (19)

we can prove that when

q∗1 = 1−
√

1− ηI ≡ q∗1P (20)

the dimensionless power output of the cycle system attains its maximum, i.e.

P ∗max=
(

1−
√

1− ηI
)2

(21)

and the corresponding efficiency is given by

ηm =
(
1−√1− ηI

)2
1+ C −√1− ηI

. (22)

Incidentally, equations (21) and (22) can also be derived from equation (18) (a detailed
derivation is given in appendix B).
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Figure 4. The dimensionless power outputP ∗ versus efficiencyη. The values ofI , C, and
Tc/Th are the same as those adopted in figure 2.

Using equation (18) and the similar method mentioned in appendix B, we can prove
that the maximum efficiency of the cycle system is determined by the following equation

[ηI + 2C − (1+ C)ηmax]
2− 4(C + ηI )C(1− ηmax) = 0 (23)

and the corresponding dimensionless power output is given by

P ∗m =
[ηI + 2C − (1+ C)ηmax]ηmax

2(1− ηmax)
. (24)

Solving equations (23) and (24), we obtain

ηmax=
[√
C + ηI −

√
C(1− ηI )

]2

(1+ C)2 (25)

and

P ∗m =
√
C + ηI

[√
C + ηI −

√
C(1− ηI )

]2

(1+ C) [√C + ηI +√(1− ηI )/C] . (26)

From equations (24), (25), and (9), we obtain the dimensionless rate of heat input at
maximum efficiency as

q∗1 =
√
C(C + ηI )(1− ηI )− C

1− ηI − C ≡ q∗1η. (27)

Of course, equations (25)–(27) can also be directly derived from equation (15) and its
extremal condition.
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It is clearly seen from figure 4 that whenη < ηm or P ∗ < P ∗m, the power output
decreases as the efficiency decreases. These regions are not the optimal regions of the
heat engines. The optimal regions should be situated in the parts of theP ∗–η curves with
negative slope. When the heat engines operate in these working states, the power output
will increase as the efficiency decreases, and vice versa. Therefore, the dimensionless power
outputP ∗ and efficiencyη must be constrained by

ηm 6 η 6 ηmax (28)

and

P ∗max> P ∗ > P ∗m. (29)

This shows thatηmax, ηm, P ∗max andP ∗m are the four important performance parameters of
Carnot cycle systems. They determine the upper bounds and the allowable values of the
lower bounds of the efficiency and the dimensionless power output, respectively. According
to equation (28) or (29), we can further determine that the optimal range of the dimensionless
rate of heat input must be constrained by

q∗1P > q∗1 > q∗1η. (30)

6. Optimal combined conditions

In order to make then-stage combined Carnot cycle system operate in the optimum working
states, the parameters in the system must satisfy certain conditions.

Using equations (3), (6), and (A11), we obtain the optimal relation of the heat-exchange
areas √

U ∗i Ai =
√
U ∗i+1Ai+1 (i = 1, 2, . . . , n). (31)

Solving equation (31) and (5) gives the optimal distribution of the heat-transfer areas of
(n+ 1) heat exchangers in the combined cycle system

Ai = A∑n+1
j=1

√
U ∗i /U

∗
j

(i = 1, 2, . . . , n+ 1). (32)

From equations (A11), (A12), (15), and (12), we obtain

x1 = 1− q∗1∑n+1
j=1

√
U ∗1/U

∗
j

(33)

xi = 1− q∗1∑n+1
j=1

√
U ∗i /U

∗
j x1x2 . . . xi−1

(i = 2, 3, . . . , n) (34)

and

xn+1 = 1− q∗1
x1x2 . . . xn

. (35)

Substituting equations (20) and (27) into equations (33)–(35), we obtain respectively the
temperature ratiosxiP and xiη in the heat-transfer processes at maximum power output
and maximum efficiency. According to equation (28) or (29), the optimal range of the
temperature ratiosxi in the heat transfer processes must be situated in the region between
xiP andxiη.

So far we have determined the optimal combined conditions of ann-stage combined
Carnot cycle system operating in the optimum working states.
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7. Several special cases

(i) WhenIi = 1 (i = 1, 2, . . . , n), there does not exist the internal dissipation of the working
fluid and the Carnot cycle is endoreversible. In such a case,

U∗ = 1

/( n+1∑
i=1

1√
Ui

)2

= U (36)

and equation (18) may be written as

(1− η)(P ∗)2− [ηc + 2C − (1+ C)η]ηP ∗ + (C + ηc)Cη2 = 0. (37)

The P ∗–η characteristic curve is given by curve c in figure 4. Equation (37) can be used
to discuss the optimal performance of an arbitrary-stage endoreversible combined Carnot
cycle system.

(ii) When Ui → ∞ (i = 2, 3, . . . , n), the irreversibility of finite-rate heat transfer
between two adjacent cycles in the combined cycle system is negligible. The equivalent
overall heat-transfer coefficient of then-stage irreversible combined Carnot cycle system
may be simplified as

U∗ = 1(
1/
√
U1+ 1/

√
Un+1/I

)2 (38)

which is identical to that of a single-stage irreversible Carnot cycle having the same
irreversibility factorI , so that equation (18) is the same as the relation between the power
output and the efficiency of a single-stage irreversible Carnot cycle.

(iii) When kL = 0, equation (18) may be written as

P ∗ = ηηI − η
1− η . (39)

TheP ∗–η characteristic curve is not of loop shape, which is shown in curve b in figure 4.
The dimensionless maximum power output is still given by equation (21), while the
corresponding efficiency becomes [37]

ηm = 1−
√

1− ηI . (40)

(iv) When kL = 0 andIi = 1 (i = 1, 2, . . . , n), U ∗ = U and equation (39) becomes

P ∗ = ηηc − η
1− η (41)

which is identical to theP ∗–η relation of ann-stage combined endoreversible Carnot cycle
system [38, 7]. The efficiency at maximum power output is given by

ηm = 1−
√
Tc/Th (42)

which was independently found by several authors [39–41] and has widely appeared in the
literature [1, 3, 5–7, 34, 36–38, 42] and textbooks [24–28].

(v) When kL = 0, Ii = 1 (i = 1, 2, . . . , n), andUi → ∞ (i = 1, 2, . . . , n + 1), the
Carnot cycle system is reversible. It can be derived from equation (18) that the efficiency

η = ηc = 1− Tc/Th (43)

is only the temperatures of the heat source and sink and independent of both the rate of
heat inputq1 and the power outputP . In such a case, the power output

P = q1ηc (44)

may be an arbitrary value, which is determined by the rate of the heat inputq1. This shows
that the results obtained in this paper are also suitable for reversible Carnot cycles.



3392 J Chen

8. Conclusions

A universal model of ann-stage combined Carnot cycle system established in this paper is
the development of the endoreversible and reversible Carnot cycle models. The universal
cycle model includes finite-rate heat transfer, heat leak, and internal dissipation of the
working fluid so that it can capture the principal irreversibility sources of some real heat
engines. New bounds of the key performance parameters in the combined cycle system
are determined. It is important that the results derived from this universal cycle model
can be suitable for an arbitrary-stage irreversible, endoreversible, or reversible combined
Carnot cycle system and, consequently, reveal some common characteristics of Carnot cycle
systems. It is more important that this universal cycle model established in this paper is of
general significance for both physics and energy engineering and may promote the further
investigation of irreversible Carnot cycles and their applications in other fields.
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Appendix A

From equations (12) and (14), we obtain

U ∗n+1D
2x2x3 . . . xn − 1

U ∗1 (1− x1)2
+ 1

U ∗2x
2
1(1− x2)

+ 1

U ∗3x
2
1x2(1− x3)

+ · · ·

+ 1

U ∗n x
2
1x2 . . . xn−1(1− xn)

= 0 (A1)

U ∗n+1D
2x1x3 . . . xn − 1

U ∗2x1(1− x2)2
+ 1

U ∗3x1x
2
2(1− x3)

+ · · ·

+ 1

U ∗n x1x
2
2x3 . . . xn−1(1− xn)

= 0 (A2)

. . .

U ∗n+1D
2x1x2 . . . xi−1xi+1 . . . xn − 1

U ∗i x1x2 . . . xi−1(1− xi)2 + · · ·

+ 1

U ∗n x1x2 . . . xi−1x
2
i xi+1 . . . xn−1(1− xn)

= 0 (A3)

U ∗n+1D
2x1x2 . . . xn−2xn − 1

U ∗n−1x1x2 . . . xn−2(1− xn−1)2
+ · · ·

+ 1

U ∗n x1x2 . . . xn−2x
2
n−1(1− xn)

= 0 (A4)

and

U ∗n+1D
2x1x2 . . . xn−1− 1

U ∗n x1x2 . . . xn−1(1− xn)2 = 0. (A5)

Solving equations (A1)–(A5), we have

x1(1− x2) =
√
U ∗1/U

∗
2 (1− x1) (A6)
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x2(1− x3) =
√
U ∗2/U

∗
3 (1− x2) (A7)

. . .

xi(1− xi+1) =
√
U ∗i /U

∗
i+1(1− xi) (A8)

. . .

xn−1(1− xn) =
√
U ∗n−1/U

∗
n (1− xn−1) (A9)

and

(1− xn) =
√

1

U ∗nU
∗
n−1

1

Dx1x2 . . . xn−1
. (A10)

From equations (A6)–(A10), we can derive some optimal relations as√
U ∗1 (1− x1) =

√
U ∗2x1(1− x2) =

√
U ∗3x1x2(1− x3) = · · ·

=
√
U ∗i x1x2 . . . xi−1(1− xi) = · · · =

√
U ∗n x1x2 . . . xn−1(1− xn)

=
√

1/U ∗n+1+
√

1/U ∗n
ATh
q1
− 1

U1(1−x1)
− 1

U∗2 x1(1−x2)
− · · · − 1

U∗n−1x1x2...xn−2(1−xn−1)

. (A11)

Solving equation (A11), we obtain√
U ∗1 (1− x1) = q1

ATh

n+1∑
i=1

1√
U ∗i

(A12)

and

x1x2 . . . xn = 1− 1

D
√
U ∗n+1

n∑
i=1

1√
U ∗i
. (A13)

Substituting equations (A11)–(A13) into equation (12), we obtain equation (15).

Appendix B

In order to determine the maximum power output of the combined cycle system,
equation (18) may be written as a quadratic equation of the efficiencyη, i.e.

aη2+ bη + c = 0 (B1)

where

a = C(C + ηI )+ (1+ C)P ∗
b = −(2C + ηI + P ∗)P ∗
c = (P ∗)2.

(B2)

It can be proven from equation (B1) that the dimensionless maximum power output of the
cycle system is determined by the following equation

b2− 4ac = 0 (B3)

and the corresponding efficiency is given by

ηm = −b/(2a). (B4)

Substituting equation (B2) into equations (B3) and (B4), we obtain

(2C + ηI + P ∗max)
2− 4[C(C + ηI )+ (1+ C)P ∗max] = 0 (B5)
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and

ηm = (2C + ηI + P ∗max)P
∗
max

2[C(C + ηI )+ (1+ C)P ∗max]
. (B6)

Solving equations (B5) and (B6), we obtain equations (21) and (22).
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